Post in evidenza

Covid-19 la nostra app è sempre attuale

  Con l'assidua collaborazione  Marco Mingione  e  Pierfrancesco Alaimo Di Loro  abbiamo creato uno strumento web interattivo che consen...

Trends in the crude death ratio

The model adopted to estimate the trend of crude death ratios[1] with the Italian data updated on April 17,2020 is a semiparametric model (see Wood 2017). Let y be the crude death ratio per  100000 population,  i=1,2,3,4 denote one of the following 4 groups of Italian regions:
(G1)  Lombardia, Valle d’Aosta; (G2) Piemonte, Trentino Alto Adige, Emilia Romagna, Liguria, Marche; (G3)  Veneto, Abruzzo, Friuli Venezia Giulia, Toscana; (G4) Basilicata, Calabria, Campania, Lazio, Molise, Puglia,  Sicilia, Sardegna, Umbria.

The model:
 yit=b0+bit+fi(t)+eit

where fi(t) is a smooth term (thin plate regression spline) describing the nonlinear relation between the crude death ratio and time by group, the error is assumed to be Gaussian. Estimates are obtained using the package mgcv in the R software and group G1 is chosen as a corner point.
The following table summarizes the detailed results and in figure 1 the plots of the 4 smooth terms are reported

Table 1 Model estimates
Parametric coefficients:
Estimate
Std. Error
t value
Pr(>|t|)
b0
0.12223
1.39013
0.08800
0.9300
b1
1.32071
0.05269
25.06600
<2e-16
b  variation  G2
-0.66093
0.03635
-18.18500
<2e-16
b variation  G3
-1.09570
0.02831
-38.69900
<2e-16
b variation  G4
-1.24006
0.02078
-59.67100
<2e-16
Approximate significance of smooth terms

edf
Ref.df
F
p-value
f1(t)
5.668
6.826
205.890
< 2e-16
f2(t)
4.409
5.470
123.487
< 2e-16
f3(t)
2.500
3.192
16.969
3.99e-11
f4(t)
2.169
2.784
6.336
0.000398

R-sq.(adj) =  0.961   Deviance explained = 96.2%

Figure 1 Estimated Smooth terms






Wood S.N. (2017) Generalized Additive Models: An Introduction with R (2nd edition). Chapman and Hall/CRC Press.



[1] The denominator is the resident region population January 2019

Nessun commento:

Posta un commento